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NOMENCLATURE

vehicle mass, slugs

acceleration of gravity, ft/sec2

vehicle vertical altitude, ft

vehicle horizontal range, ft

vehicle trajectory elevation angle from horizontal
time, secs

vehicle velocity, relative to earth, fps
rocket motor exhaust velocity, fps

rocket motor burning rate, slugs/sec
aerodynamic drag on vehicle, lbs

rocket motor thrust on vehicle, 1lbs

vehicle cross-section reference area, sq ft
drag coefficient

dynamic pressure, psf

ratio of atmospheric specific heats at constant
pressure and constant volume

vehicle Mach number

atmospheric pressure, psf

atmospheric sound speed, fps

atmospheric temperature, ®Rankine
atmospheric gas constant, ftz/sec2 ORankine
atmospheric density, slugs/ft3

vehicle Reynolds number

ve' icle base diameter, ft

. s 2
atmospheric kinematic viscosity, ft /sec
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NOMENCLATURE (Cont 'd)

constant in analytic approximation to drag coefficient
. 0 .
atmospheric lapse rate, Rankine/ft

increment in any quantity corresponding to increment
in altitude

( )n~1 quantity evaluated at beginning of increment in altitude
« ) quantity evaluated at end of increment in altitude
n
h
"op 2
Z&In = (sﬂdh aerodynamic drag integral, lb-sec/ft”.
n=1
S 3 - c $ .
( )n arithmetic mean of quantities ( )n-l and ( )n
2g\h
ZX&L = 2n non~dimensional altitude increment
noy
n-1
2g AX
ZSan= _-__EE non~dimensional range increment
n-1
gt
£§t;-= v o non~dimensional time increment
n-1
AV
zSﬂJ: = o non-dimensional vehicle velocity increment
: n-1
AV
Vot
A =g non-dimensional vehicle gravity velocity decrement
gn 'n-1
AN
[&\/' =7 n non-dimensional vehicle aerodynamic drag velocity
Dn n-1 decrement
DV
Fn
131{; = non-dimensional vehicle thrust velocity increment




‘0

v k2 g '
~ vii -
NOMENCLATURE (Cent‘d) z
N I3 - » s 3
) elevation angie of chord line between points (n~1) 3
n and (n) on trajectory 9
rl. = —-—E—Jl—- non-~dimensional altitude increment for universal ;
sin en-l zero-g trajectory g
. X ?
f; = L non-dimensional range increment for universal zero-g E
sin 2 trajecto p
in en-l rajectory .
or ;
:
g At 4
= L0 non~-dimensional time increment for universal zero-g ¢
V_.sin 8 \ §
n-l n-1 trajectory ]
3
_ _m8 s s . . 2 \4]
B=2"7 ballistic coefficient lbs/ft ]
§
:
O( = mi non-dimensional thrust parameter j
b
An = - An non~dimensional altitude increment 3
m .V: sin 6 ¢
n-l Jn 3
T, = =%~ non~-dimensional mass
Mh-1 i
v, x
V.= —1- . k
j Vu-l non-dimensional rocket exhaust velocity |
h 1
= n , P, dh . . 2 i
[}Jn = u( ( 3 ) T, aerodynamic drag integral, lbesec/ft ]
L‘n--l
c coefficient in exponential atmosphere model, /kft :
d
‘§ _ 1.10 bn parameter in evaluation of AJ 3
= Cm~ n b
n . 0.40 : y
U. v sin 6

ig n-1l'n=-1 n ;
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NOMENCLATURE (Cont'd)
parameter in evaluation of Z§1/11
parameter in evaluation of [lerl

absolute velocity of vehicle, fps

earth surface velocity at gun muzzle, fps
2 -+

angle between vectors V and bE, radians

azimuth angle of gun, radisns

path angle of trajecrory (absolute) to local
horizontal,radians

absolute azimuth angle, radians

radius from earth centre, ft

angle of radius vector in trajectory plane, measured
from perigee, radians

. . . 2
constant in . ngential equation of motion, ft /sec
non~dimensional altitude increase
parameters introduced in solutions of iategrals

range incremeat angle, radians
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1.0 INTRODUCTION

: The precise calculation of the motion of a gun-launched vehicle
i through and out c¢f the atwosphere depends on 2 large numbzr of parameters,

These include the enviroamental parameters of atmospheric properties and
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gravity, which vary with altitude, and effects of ithz earth's rotation,
which depend also on the launch direction. Then there are the wzhicle

# parameters of mass, extermal size and shape, motion of contrzl surfaces,

specific impulse, mass ratio, and ignition and buraing time of any vocket
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motors, and auxiliaxy or directional thrust systems. Finally thnere are
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the gun laumch parameters of initial velocity and direction.
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Inclusion of the accurate variation of these parzmeters along fLhe
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tcrajectory leads to equations of motion which canmnot be solvel exactl

™
f

; Consequently, various numericzl computer programs have bzen devised, and
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these satisfactorily determine trajectories fo
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meters. In general they also can rapidly display the results of arbitrary

variation of the pavamsters, so that optimum trajectories among those
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calculated can be selected,

This approach to trajectory calculation. while probabiv essencial

for accurate final calculations for a pavticular vehicle missisr, suffers

from two serious defenis when applied to preliminary trajectoxz; zalcuvlations, 4

8

in which possible missions for existing or pruposed vehicles are t:ing con- ;

o4

sidered, First, a computer may not ne as veadily available as the require- p

q b
¢ ments for a set of rapid prsliminary calculations would indicate, Second, g
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and more serious, as in all numerical programs the cutput of numbers has to
be interpreted and analysed for trends in the light of the parameter input.
There are no analytical forms linking input and output, from which trends
could be discerned and predictions made, and as a result it is difficult

to reach clearcut decisions about new vehicle micesions.

It would therefore be useful if simplified forms of the governin
equations could be developed which would retain the essential features of
the exact equations and produse vehicle trajectories and other performance
characteristics accurate to within 5 or even 10 percent, while providizg
straightferward analytical or graphical links between the various parameters
and the resulting performance, That is the main purpose of the present
report, An additional purpcse is to provide, for reference, derivations
of some of the important equations governing the motion of gua~launched

vehicles,
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2,0 FUNDAMENTAL ASSUMFTIONS

It will be assumed that the vehicles considered are aerodynamically
symmetric with respect to their trajectory at all times, so that they
experience no lift, merely drag, in their motion through the atmosphere,
Any rocket thrust will be assumed to be constant in magnitude, and directed
back aloag the trajectory, so that the vehicles are turned only by gravity.
During motion of the vehicle either through the atmosphere or under the
action of rocket thrust, or both, it will be assumed that the gravitational
force is constant in magnitude and direction. The above assumptions will

be accurate to within 3 percent for aimost all cases.
2.1 BASIC EQUATION OF MOTION ALONG TRAJECTORY

In the light of the above assumptions, Figure 1 serves to define
the equation of vehicle motion along its trajectory, Newtona's Second Law
of Motion requires 'Resultant External Force along Trajectory = Time Rate
of Change of System Momentum along Trajectory', The external forces ave
the tangential component of gravitational force mg sin © and the aerodynamic
drag D, The rocket motor thrust F is an internal force accouznted for by
the system momentum change, Consider the vehicle at time t when its mass
1s m and its velocity V, After an infinitesimal time incremernt At the
rocket exhaust of comstant velocity Vj has expelled mass ~An (the minas
sign preserves the algebraic sign convention) and the velocity of the

vehicle has increased to V + AV. Thus Newton's Second Law beccmes:

- ———— P - o e n et e e e ey e e e e et K e 2 et e bt =

oS |




o

BEACST ~2nias

Figure 1 Vehicle Trajectory Parameters
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{(m+ Am) (V+ AV) -« Anm (V - VL)} m[m\{}

-~ D - mg sin @ = Lim AL
At==0
dav dm
mge V5 a
or F-D-mgsin®=mn %% (2.1)
dm

where F=-«V = ij, and b is the constant motor burning rate.

j dt
If Eq. (2.1) is multiplied through by %E and then integrated from

an initial state denoted ( )n 1 on the trajectory to a final state dencted

( )n the result, using the fact that the rate of increase of altitude,

= vsine (2.2)
is
h h
n n
v+ Toel D .. dh
vn Vn-l Vj In m mV sin 6 dh - g Y
h o
n-1 n-1 (2.3)
or

Avn =AVF - AvD - Avg
n n n

In Eq. (2.3), the integrals for the velocity decrements from aerodynarmic drag

and gravity cannot be evaluated by quadratures without the intrcducticn of

further assumptions, The integral for ﬁ&VD is considered first.,
n

AERODYNAMIC DRAG OF GUN~LAUNCHED SYSTEMS

Aerodynamic drag 1is conventionally expressed in terms of a drag

coefficient C. through the defining equation

D
D= CD q A (2.4)

where A = reference area = prcjected frontal area of body for a rocket or

%
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gun-launched vehicle,

q = dynamic pressure,

In high speed aerodynamics the drag is caused by both the compres~
sibility and friction of the air, and therefore the drag coefficient depends

upan both Mach number M and Reynolds number NR’

Cp = Cy (M, Np) (2.5)

where M = %% = Vehicle Mach number
N = %9. = Vehicle Reynolds number
a = local atmospheric speed of sound
d = vehicle base diameter

X
"

local atmospheric kinematic viscosity.

It is convenient to express the dynamic pressure in terms of Mach number,

q = %RMZ (2.6)
where ]{ = ratio of atmospheric specific heats at constant pressure arnd
constant volume
= 1,40, assumed constant
p = local atmospheric pressure,

R is complex, even for simple vehicle

shapes, and it has been common to make approximations in performance analysis.

The dependence of CD on M and N

In the present analysis, the nature of gun~-launching permits a very simple

and useful approximation to be made, All gun-launched vehicles have initial
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Mach numbers greater than 3, and even without rocket boost, vehicle Mach
numbers will rarely fall much below 3 during motion through atmosphere
dense enough to produce significant drag., Therefore it is not aecessary
to consider the drag variation of the vehicles in subsonic and transonic
flight (as is required for conventional rocket~launched systems). Only
the drag variation in supersonic and hypersonic motion need be considered

and this is much simpler.

Over the range of velocities through the atmosphere experienced
by a vehicle on a typical gun-launched mission, the variation of CD with

NR will be quite small, and it is assumed henceforth that
Cp = Cy (M) (2.7

only for a particular vehicle. This variation can be approximated quite

accurately in the supexrsonic and hypersonic range by the relation

c. =K (2.8)

where K is a constant chosen to provide the best fit of Eq. (2.8) to the
available data for the vehicle over the Mach number range of interest., In
Figure 2 such a fit is shown for the Martlet 2A glide vehicle, the data
being obtained from Reference 1. 1In the figure the maximum deviatior of
the approximate from the actual curve is 7.7 percent, and since it is clear
that positive and negative deviations will tend to cancel in the drag
integral of Eq. (2.3), and that in any case the actual values of CD may not
be accurately known at the time of the preliminary calculations for which
this analysis is intended, the approximation of Cj by Eq. (2.8) is seen to

be satisfactory,
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Therefore, Eq. (2.4) becomes

<
o=5%fé - (2.9)

and the drag integral can be written

hn
Ay, = %@- f (&

" hn-l

(2.10)

m sin e

Y

In the integrand in Eq. (2.10), (p/a) is a property of the local atmosphere,

T

and is a function of h only for a given model of the atmosphere. As the

e

ey

RE

vehicle ciimbs through the atmosphere after gun launch, sin 0 is a slowly
decreasing function of h vwhich of course is unknown until the trajectory

18 determined., However, the initial value is known, and because of the slow

Bk S DRSS )

decrease with increasing h, a sufficiently accurate average value sin §,
can be determined from the equivalent zero-drag trajectory between the same

altitudé 1imits, The drag integral can then be writtea

3 Av. = K¥A dh (2.11)
: P 2 sin 9, (2.) "

ARy el W

For vehicles without rocket motors, or for glide sections of any

: gun-launched vehicle trajectory, m is constant and Eq., (2.11) can be evalu~

SO

ated directly. During motion through the atmosphere under rocket thrust,
m decreases at a constant time rate, and again the equivalent zero-drag

p
trajectory can be used to approximate m as an integrable function of h

between the same altitude limits.

T

The significant observation to be made from Eq. (2.11) is that,

o

R e s s s o —— e - = . r——— [ TTERTARS o w e N e e et o e e e e —
snmand - e




TR TS

LS Nl e}

Sl e L 6§ 3 §ore R

[l

RN el 7ady,

T =
o A VM

TN

2.3

- 10 -

within the accuracy of Eq. (2.8), the decrement in velocity experienced by a
supersonic or hypersonic gun~launcheu vehicle due to atmospheric drag is not

increased by increasing the launch velocity of the vehicle, as one might

expect intuitively.

On the contrary, for a vehicle without rocket motor, or during a glide
section of any vehicle trajectory, the drag velocity decrement is nearly
independent of the vehicle velocity, which enters ouly through its rather
small effect on the value of EI;-§; in Eq. (2.11), and here the effect of
increased launch velocity is to increase EIE'E; and thus reduce the drag

decrement,

For a wocket-powered section of vehicle trajectory wiih a motor of
given burning rate, the effect of increased launch velocity is to reduce
the decrease of vehicle mass m in passing through a given al“itude inecrement,

and thus again reduce the drag velocity decrement.

In general, then, Eq. (2.11) shows that for any gun~launched vehicle,
the higher the launch velocity, the lower will be the resulting decrement i

velocity due to aerodynamic drag.
THE MODEL ATMOSPHERE

Before Eq, (2.11) can be integrated, the dependence of (p/a) on h for
the atmosphere under consideration must be put in suitable analytic form,

Here the model used assumes a linear variation of temperxature T with altitude,
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where

”
[{ = lapse rate = constant,
'

(2.12)

The air is assumed to obey the equation of statoe of a perfect gas

p=C2RT

where 2 air density

R = specific gas constant

2

= 1716 ft%/(sec?. ®Razkine)~l,

(2.13)

The additional relation needed is the vertical equilibrium equation for

the static atmosphere

do _ _
am -~ @s

(2.14)

If @ and T are eliminated from Eqs, (2.12), (2.13), and (2.14) the

result is

-d.E. = o pg
dh R ‘i rr-l - @ (b hnvl)j
or P {.h
®..5 J dh
; R \ T - w(h«h_ )
. 5 . nel Qﬁ nol
®a-1 hpe1 L '}

This equation is integrated directly to produce the pressure~altitude

re¢lation g
{ Toy v @Gon ) )ER
Be = .
Pro1 Inol

(2.15)

2 h 2l

-

(TR

TN « MV

Al

o,y




TN T,

AT

(SAiiadeis

LISt i i e (e

-12 -

The speed of sound in a perfect gas is given by

a= ASRT (2.16)

and so, using Eq. (2.12),

a =AY R{_Tn_1 - B -] (2.17)

Therefore, the required function for (p/a) is, with a little rearrangement

P

n-1 an~1
an-l) L

-Pth-h Hlg .
R ml b ER : (2.18)

(B) ( —

For a particular atmosphere, @ is chesen tu fit the actual temperature
variation within given altitude limits, In this report, the reference
atmosphere is the Cape Kennedy Standard Atmosphere from Reference 2, and

a very goocd fit is obtained using 3 values of (?’ , as follows:

0<h < 50,8 kit B, = 3.56% ket
50.8 < 1 £ 162.4 kft B, = -1.235% ke
162.4 ¢ h < 270.6 kft B, = 1574 ket

Figures 3 and 4 show the close agreement between the pressure and sound
speed from Reference 2 and the values given by Eqs., (2.15) and (2,17},
using the above values of @ . For this atmosphere, at sea level (h = 0):

P, = 2125 psf, a_ = 1138 fps, g = 32.15 ft/sec’
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3.0 GLIDE TRAJECTOKIES

When a gun-launched vehicle is not moving under rockat motor thrust,

mass m is constant, and Eq. (2.11) becomes

h
n
AV, = K¥A (‘E_)dh = KX____.A VAN 3.1)
Do om Trres a 2m Sin 6 n
hpe1
The integral lﬁ‘[n is evaluated using Eq. (2.18) and the sclution of Eq. (2.3)
can then be considered.
i
| 3.1 EVALUATION OF DRAG INTEGRAL
h g %
P _ n . - S
J AIn:::( n-l , .[rn-l pg G hn-lg}ng dh
a . g -3
n-1 T 8
H ' n-1 8R
hn-l
E Ppe1 L 1 T B NS
= =( ) i . n-1 %(Hl' b1 gx
' +5)

ag.y
24
- Tn-l ﬁ?ﬁ

Pp-12p.1 Ppdn lb-sec/ft2
* using eqs. (2.15) and (2.17). (3.2)
2

5.
Tn-:l @R (@g‘-ﬁ /7 J
+ %

i

Using the psrameters for the model of the Cape Kennedy Standard Atmosphere,

this function has been calculated for increments of altitude from sea level

until incremental values of the function become negligible, The results are
given in Table 1, and the total function In from that Table is plotted in

Figure 5, It can be seen that the drag decrement in vehicle velocity becomes

T
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negligible above 160 kft,
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TABLE 1

Drag Decrement Integrals AlIn and In

- k?t [iigsec/ftz 1II>Bsec/ft2 - k?t ziigsec/ftz llfl-}sec/ft2
0 0 0 0 14 65.6 2740 47100
1 1.00 2080 2080 15 82.0 1370 48500
2 2,00 1950 4030 16 98.4 630 49100
3 3.28 1810 5840 17 114.8 288 49400
4 6.56 5420 11250 18 131.2 141 49500
S 9.84 4660 15920 19 147.6 67 49600
6 13.12 4240 20160 20 162.4 34 49700
7 16.40 3760 23920 21 180.5 22
8 19.68 3200 27120 22 196.8 11
9 26,24 5420 32540 23 213.2 6
10 32,80 4650 37190 24 229.6 3
11 39.36 3300 40490 25 246,0 1
12 45,92 2520 43010 26 262.4 1
13 50.84 1390 44400 27 270.6 0

TOTAL 49,700 Llbesec/ft2
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3.2 ZERO~DRAG GLIDE TRAJECTORIES

The equations of motion for a vzhicle moving without rocket thrust
or atmospheric drag under constant g are very simple. They are usefyl
in the present analysis both in providing a basis for approximating certai-
functions in Eq. (2.3), and in themselves as giving sufficiently accurate
results for the upper parts of vehicie trajectories high enough to neglect

aerodynamic drag but not so high as to require the inclusion of g variations.

The first relation needed is obtained directly from the conservation
of mechanical potential and kinetic energy:

V2., ~«V.2
h -h =22t T (3.3)
n n-1 2g

The other relations needed are obtained by manipulating the equations of
vehicle motion in the X~ and h- directions (see Figure 1), and are derived

in Appendix A:

- .1 2 2
Ak = tano__ JAX w1 s o AXE (3.4)
o _,\/ sin? 9hu1 ..A-?\, /\/ ‘ 5 s
sin 0 = 1"A'?\n 1_A_?% (3.5)
or
Cos @ 1
Cos @, = —s (3.6)
Nt - X
where

3.7

N
¢
=2
[
~
[}
T
]

]

]
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3.3 APPROXIMATIONS FOR GLIDE TRAJECTORIES WITH DRAG

For a vehicle moving without rocket thrust, Eq. (2.3) can be

written, using Eq. (3.1):

Avn=-Av - AV

Dn gn
- KXA A1 - | @ (3.8)
2m sin 8 n v
n h

If there were no aerodynamic drag, Eq. (3.3) could be used, and written
in the form showing the velocity decrement caused by gravity:

= 2g (b, - hn=1)

V =V =
n n-1 Vn + Vn-l
nr AV = - gAhn =AvV (3.9
n 7 gn
i
where
V = +V) =V _+ v .10
RENAEANEANFES FAVA (3.10)

It is now assumed that AV in Eq. (3.8) can be approximated by an expres=-
sion of the form of Eq. (3.9), with Vn the arithmetic mean of the actual

\Y) and V :
n

nel

g Ah

1

Avn= ~Aan - =
n

or, multiplying through by Vn and using Eq. (3.10):

% /_\vn2 Utk Aan) AV + (vn_lAan + glhy) = 0.

et e e — s - - -
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Solving for /.kvn, and dividing through by V_

..1:
\ 7 ,
AV AVD J /—WD A D
= n n n .2 n gL
—= =~ (1+}% Y+ Al A+ 5 ) w27 - DO
Vn-l vn-1 Vn--l Vn--l n
AV =-@+3awr )+ J@-xnn)? -af 3.1
or R U;)n - 2,5_\,Dn Ar .1
Avn AVDH
where Au’n =7 A'er =7 (3.12)
n=-1 n n-1

Before Eq. (3.11) car be used te calculate velocity decrements along a

glide trajectory, a method of determining sin Qn in the expression for

AV must be given. It can be shown that
D g
n

hn
L dh
sin 8
n
hn-l
is a good approximation to
h
n
dh
sin 8
hn-l
where sin Gn = % (sin gn-l + sin Gn) (3.13)

and sin Gn is given by Eq. (3.5).

For example, with sin gn—l = 0,50 and sina Gn = 0,25, the approximate formula

is only 1% higher than the exact integral.

“
L
Vomn eaaon 2

L A2aeddy
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Thereforelgzﬁ_ag as defined by Eq. (3.13) is used in Eq. {3.1).
In the calculation procedure next tc be described, the fundamental inde-
pendent variable is the altitude increment A hn‘ Calculation of the
vehicle trajectory requires corresponding values of the horizontal

range increment A xn, shown in Figure 6. Since
~J
Z}Xn = cot 8 Zlhn

and 3; will not b. -ppreciably different from 5; as given by Eq. (3.13)

it is assumed that a satisfactory approximation is

Axn = cot 8 Ahn (3.14)

n
In the same way it is assumed that the time increment Z&tn is given by

At = 1 An (3.15)

By Ssin @ n
n n \

\

0,
7
& ,

~J

%

G~/ V fopp-1

AXp
-/ Xp

Figure 6
Basis of Horizontal Range Increment Approximation
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3.4 CALCULATION PROCEDURE FOR CONSTANT-g GLIDE TRAJECIORIES

For a given vehicle launched under given conditions in a given

model atmosphere, the following parameters are known:

g, m, A, K, x 3 vO’ 90

K&A

The factor om in ZXVD can therefore be calculated. The drag integral ZSIn
can be determined for :ach altitude increment é;hn from Figure 5 or Table
1. The altitude to which the aerodynamic drag is significant is broken
down into a few increments, the number increasing with the accuracy desired.

Thus four increments should be sufficient for most preliminary calculatiomns,

while one may be enough for a rough calculation,

The procedure is then to use the equations of \§ 3.2 and 3.3 to
determine the velocity decrenient, horizontal range increment, time increment,
and final elevation angle for each altitude increment, Above the final
atmospheric altitude increment, the equations of jf 3.2 and Appendix A
are used to calculate the remainder of the trajectory to its apogee.
Alternatively, Eq. (3.4) for the parabolic zero-drag trajectory can be put

in the universal form:
n=-:€-6°% (3.16)

where é and Q‘ are defined in Appendix A. Eq. (3.16) is plotted ia
Figure 7 and all zero-drag, constant-g glide trajectories can be determired

from it.
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In greater detail, the procedure for the atmospheric part of the
. . ; .
trajectory, given hn—l’ éshn, \n-l’ gn-l’ is to calculate ZSJ%,H from
Eq. (3.7) and use this to calculate sin Gn from Eq. (3.5) or coserl from

Eq. (3.6). (The latter is more conveniert for values of en-l near 900.)

This determines the new elevation angle Gn. Next sin Qn is found from

Eq. (3.13), giving 5;. With Z&In determined for the given Zklklfrom

Figure 5 or Table 1, Z§‘VD is calculated from Eq. (3.8), and z&mrb from
Eq. (3.12). va[&lqlcan ge calculated from Eq. (3.11), and this giges the
velocity change [&Vn from Eq. (3.12). The range increment FAY Xn is calculated

from Eq. (3.14) and this gives the new Xn corresponding to hn' The time

increment L}tn is calculated from Eq. (3.15), giving the new tn' The new

The procedure is then

velocity V_ is given by adding AV to v _.
n n n-1

repeated for the next altitude increment.

Figure 8 gives the application of the procedure to the trajectory
of the Martlet 2A, IOWA shot from the Barbados 16" gun on March Zs, 1965,
Results of calculations with both four and one atmospheric altitude incremerts
are compared with radar-determined trajectories of the actual shot from
Reference 1, and with the standard HARP trajectory from Reference 3. GCurves
are given for vehicle weights of both 170 lbs and 180 lbs, since kre actual
vehicle weighed 170 1bs, while the HARP trajectory was calculated for 180 lbs.
Figures 9 and 10 show the variation of vehicle velocity and elapsed time with
altitude, up to the apogee, for the 180 lb vehicle as calculated by the present
method with both four and one atmospheric steps, and by the standard HARP
computer program. Calculations for Figures 8, 9 and 10 are tabtulated in
Appendix B, In Figure 11, the 180 1b trajectories a'e compared again for

greater clarity,
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A comparison that makes greater demands on the method is shown in
Figure 12, Here a projectile is analyzed from launch to impact, with the
entire trajectory low enough that measurable aerodynamic drag is experienced
throughout, The present method with four atmospheric altitude increments
for both climb to and descent from 80,000 ft and altitudes above 80,000 ft
assumed non-atmospheric, is compared with the standard HARP computer program,
and elapsed time, velocity, and altitude are plotted against range, Cal-

culations are given in Appendix C.

DISCUSSION

The calculation procedure is very simple and, even for a choice
of several altitude increments in the atmosphere, it can be carried out
quickly using just a slide rule or a slide rule and trigonometric tables.
Despite this simplicity, the curves of Figures 8, 9, 10, 11 and 12 show
that it produces accurate results, agreeing closely both with actual

measurements and with more exact numerical procedures,

Figure 8 shows that a four-step atmospheric calculation predicts
the observed trajectory of Martlet 2A TOWA very closely, with the apogee

only 1,8% higher than that observed.

Figures 9, 10 and 11 show that the four-step atmospheric cal-
culation for a 180 1b Martlet 2A gives results nearly identical with those
of the HARP computer program, Moreover, even the one-step atmospheric cal-
culation gives good accuracy in this example, the velocity values and
elapsed times lying quite close to the HARP curves, and the trajectory

having an apogee only 3.07% high,
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Figure 12 shows that even a low-altitude prcjectile trajectory is
calculated from launch to impact with good accuracy by the method. Errors
in calculated quantities at points along the trajectory are generally less
than 5%, and in some of the more important quantities the errors are:
range {(+1.9%), apogee (+4.2%), range at apogee (+1.1%), velocity at apogee
(=3.5%), time to impact (+4.1%), time to apogee (+3.3%), velocity at impact
(~9.0%). The larger error in impact velocity is caused by matching the
formula for drag coefficient, CD = ﬁ-, to the curve used in the computer

program at M = 4.4, This gives excellent agreement at the higher Mach

numbers, but produces higher drag at the lower Mach numbers preceding impact,
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ROCKET POWERED TRAJECTORIES

The altitude change during the burning of a rocket motor stage of
a vehicle is in general small enough to permit neglect of the change in g
during metor burning. For altitudes below about 160 kft, however, effects
of aerodynamic drag cannot be neglected, and the vehicle velocity increment
A Vn resulting from rocket thrust is then given by Eq. (2.3), with the drag
velocity decrement A\ VD given by Eq. (2.11) and the gravity velccity
decrement Z&Vg given zy Eqs. (3.9) and (3.10). 1In this section the
evaluation of z;vn from Eq., (2.3) and the determination of cother rocket=-

powered trajectory parameters are described,
EVALUATION OF ELEVATION ANGLE

Before AV can be evaluated from Eq. (2.11), a2 suitable

D
n

determination of the mean value sin Gn must be made for a rocket~powered
trajectory, and the dependence of mass m on altitude h during thrusting

must be expressed so that the integral can be evaluated,

As in the glide trajectories of the previous section, the deter-

mination oi sin Gn is approached by neglecting the direct effect of drag

on elevation angle, It is shown in Appendix D that in zero-drag, ccuastanteg
conditions, the differential equation governing the variatiun of elevation
angle 8 with time t under the action of thrust F is

2

2
49 4 (2 tan o - Ksec8)@HZ oo (£.1)
at? de

where

o o
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For the constant thrust rocket motors under consideration here, OC varies
with time and Eq. (4.1) is a fairly complicated nonlinear differential

equation. Two special cases of the equation can, however, be treated

easily. 1L1f K= 0, of course, Eq. (4.1) governs zero-drag glide trajectories

and the solution of Eqs. (3.5) and (3.6) is obtained, If CK = constant, it

is shown in Appendix D that Eq. (4.1) is easily reduced to the integral form:

e
n (=2 cosoc-l o AT
cos 8de _ n-1 n
& = - “ (4.2)
(1 + sin 8) (L +sin 8 .)
5 n-1
n-1
sAT
where AT = L
n \)
n-1

This is integrable by quadratures for L = 0, 1, 2, 3, and it is readily
evaluated graphically or numerically for other values of oL , Eq. (4.2)
shows that 8 =6 (8 .,cC,AT ). Now, A‘kn, defined by Eq. (3.7) is

also given by the functional form A‘?\,n = A‘K_,n(er_l, K, A't’n), o)

that 8 can be expressed
= L, A 4

Eq. (4.3) must reduce to the value given by Egs. (3.5) or (3.6) for K = 0,
and must reduce to Qn = gn-l for oC— D, It is therefore plausibtle to

try as an approximation suitable for easy calculation the analytic forms

2 1
sin“ @ - f (o¢) AR
sin @ = n-l n (4.4)
n 1 =-f (<) A’ﬁun

(5]
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Cos @ -1
or Cos (-)n = 2 . (4.5)
AL - £ eah
where £f (o) =1, £ () =0,

An exponential form for f(oC) suggests itself, and it was determined

empirically as follows. It is shown in Appendix D that, for constant o s

a4, . B e
N . sin 8 d L 2 " Alsin0dC
Ag’n— 2 (X + sin gn-l) J o+ sin 6 2 (- I)J ol + sin ©
0 o

(4.6)

Eqs. (4.2) and (4.6) were integrated numerically to obtain exact soiutions
for constant O with which values obtained from Eq. (4.4) with different

choices of £f(¢{) could be compared. The final choice of £(oX) was

0.7
£(oC) = e -0,250c% G.7)

In Fig., 13 this function is compared with the exact solutioms at zﬁ'tf_ =

.25 for 0, = 30° and 60° over the relevant range of & ., (o) was

1
chosen to lie somewhat below the exact curves for two reasons. The first is
to take some account of the effect of drag, otherwise neglecred ir. this
analysis., The second is to relate to the actual constant-thzust rcoket

motors under considera ion, for which oC increases steadily from igricion -

burn~out. In applying the analysis to such motors, a mean value of <

=k (el L) (4.8)

is used for simplicity, but this tends to make £(cz:n) too small, and chere-
fore sin en too large., With sin Qn given by Eq. (4.4) and (4,7) ;ﬁ::7;\ is

given by Eq. (3.13).
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4.2 EVALUATION OF DRAG INTEGRAL

Since the drag velocity decrement is a small fraction of the g
velocity achieved under rocket thrust, the mass-altitude relation needed

to determine it can be based with sufficient accuracy on the equivalent

MO AT 7T, s PRSP

e

zero-drag trajectory, with sin 9 = sin Qn. Eq. (2.1) can be written

av dn ;
mIr = Vj It mg sin Gn (4.9) :

I

On multiplication by i_t:_ and integration this gives

V= L. -d-h=V -V, In ~-gsin 8 (£ -t ) (4.10) f
- dt n-1 i m n n-1 :
sin 6 n n-1 3
n k
A second integration, using the motor burning relation ]
mEmog bn (t -t _1) (4.11) :
gives ——
w +V,.) sin 8 V. sin 6 ’
n-1 iy n i, n :
b= byt b (Mo =+ mln
n n n-1
2
g sin 6 2 A
- il - . 2 k
= (n ;- (4.12) ,
2b :
In Eq. (4.12) it should be noted that the last term is very small in comparison :
1
with the second term on the right side, Thus, their ratio is
g sin Qn (mn__1 - m) ] g sin On t - tn__l) - order (10)_2 ;
b (V. + V) 20V + V) ;
n o n-l i n-l j i
n n 3
using typical values for the parameters, Accordingly, the last term can be 5
neglected in the expression for m for use in Eq. (2.11). The remaining terms
;
g
3
:
k-
{
g

- — - e+ e e e e e e e -
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are made dimensionless by multiplication by

b
n
V., sin @
n-1 iy
giving:
Al = p— G =(;,-}- + 1)<1 =)+ 1Inm,
m V. sin § j
n-1 j n n
(4.13)
Y5
. o _.m
where 'U‘J. = F s 'YYb -
n n-1 n~-1

Eq. (4.13) is plotted for relevant vslues of 'U-j and M, in Fig. 14,
n
(The subscript n of course refers to the evaluation of the function for an

altitude increment  Ah =h_ - LR,

Although a simple expression, Eq. (4.13) is not directly useful
in evaluating Eq. (2.11), since it is transcendental and “rf, cannot be
given explicitly as a function of AH. However, 'WL is unity for AH =0
and '?Y[, approaches zero as AH becomes large, so approximation by a

function of the form
™, = e ”f(”}n) Al (4.14)
is plausible., It was found empirically by comparison with the curves of

Fig, 14 that the function

f(y. ) = 1.10 Ay, 0-60 (6.15)
Jn Jn

gives satisfactory agreement with Eq, (4.13). Thus, Eq. (4.14), using

v e~ e - - - -
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Eq. (4.15), is plotted on Fig. 14 for 1;5 = 1,0 and 3.0, and the agrea-
n
ment with EZq, (4.13) is seen to be good for 'Yq) greater than 0.3, the

relevant range. Accordingly, Eq. (2.11) is put in the form

AVD - KXA Al (4.16)
n 2m sin @ n
n-1l n
where h
" p. dh
a3, " @ (4-17)
n-1

and ‘Wb is given by Eq. (4.14) and (4.15).

Unfortunately, however, the function for (p/a) given by Eq. (2.18)
is not integrable by quadratures in combination with Eq. (4.14). 1t is

therefore replaced for this integration by the function
B\ (P <c(h = h_.)
(3= - -1 (4.18)

where ¢ is determined empirically to give good agreement with the true vari-
ation of (p/a) over a selected altitude range. Eq. (4.18) would be exact

for an isothermal atmosphere, and is a good approximation for an actual atmoe
sphere over limited ranges of altitude. Thus, in Fig, 15, Eq. (4.18) is seen
to give excellent agreement with the Cape Kennedy Standard Atmosphere for

altitudes betweer 40 kft and 120 kft, with ¢ = 0,04808/kft.

With the com ination of Eq. (4.14) and (4.18), Z}Jn can be evalu-

ated:
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h
P ? b 7
1.10 n
a3, =z S ~e + ks (h =)
n a)n-l e 'U"j 0.40 n v Sin ® n-l dh
hn-l n n-

n-1 1 n

P -¥ An

=(;) L J1.e °n “} (4.19)
n-1l ]§::
where ’S 1.10 bn (4.20)
= c -
n v 090 V . sin®
i n-1 'n-1 n

DETERMINATION OF VELOCITY AND TRAJECIORY PARAMETERS

It is now possible to consider the evaluation of the net velocity
increment Avn arising from the effects of rocket motor thrust, aero-

dynamic drag, and gravity:

Avn= AvF - AVD - Avg (2.3)
n n n
or
Ay = & ekl
V= AV, - AV -
n Fn Dn Vn-l * ¥ Avn

using Eq. (3.9) and (3.10). This is made non~dimensional by division by

n-1 g"
A
Av = AV - — B AV (4.21)
n Fn 2+A'U"n I)n
where
: R A
Ay - =V, an b - Ly (4.22)
n n n 2m \Y sin 9
n-1 'n-1 n
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Solving Eq. (4.21) for Z&ITA:

Sz
Av, =-1+% Qv -Avy) +, /1t +5 Qvp -Ag )} - Afvn (4.23)
n n n n

Eq. (4.23) reduces to Eq. (3.11) if ijy-F = 0 (no rocket thrust), The
procedure for evaluating Eq. (4.23) is, hogever, different from the previous
one. In evaluating Eq. (3.1l1), [&hn was selected and therefore Lyﬁﬁ was
given, and the time increment éﬁtn was part of the solution. In the
present case, in which the burning of one rocket motor stage counstitutes a
trajectory increment, the time increment Zﬁtn is known, as is the mass

decrement Zlmn, s0 [xebn must be found from the mass-altitude velation.

In Eq. (4.12) there is no need to neglect the small final term

at this stage of the calculations, since only simple algebra is invoived.

28

2
v n-1

Therefore, on multiplication by » Eq. (4.12) becomes:

n

[.\.‘?\,n=2'u-jn §. An -q -’rqn)z S % (woaw

where é: ) gm _, sin Gn
n \Y

n-1 bn

and £LHn is given by Eq. (4.13) or Fig. 14. The calculation procedure can

now be described. It is convenient to introduce a parameter 25_11
[ 3t %

defined by:
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;
. In terms of an-l’ 3
V. b Vs 3
— i, ® 1 1 Jafr-1 1, (4.26
ol = = a = aLn- "') .
n g (°<n-l +o<n) 2g ( m + m ) 2 a +'m,n) 3
n-1 n
sin 6 ;
and = e E
n En-l g
A complete rocket-powered stage is calculated as one trajectory E
increment, The known initisl parameters are Vn—l’ tn-l’ hn-l’ en—l’ Xn~l’ g, i
/ . 3 . k
K, ¥ , A, mo_1 Py © an, (P.a)n_l. At is known, and this determines ;
tn and A m . ﬂf} and'hyn are calculated and :ZXH.n is found from
r N :
Fig., 14, E‘n-l and :;En are calculated, and a trial value of sin 0
is estimated, based on the knowledge of sin gn-l and EEZH. Using this,

é n is calculated from Eq. (4.27) and gﬁﬁln from Eq. (4.2%). f(E;Eq)

R, S S T S N P TR )

. is then found from Eq. (4.7) and cos en is calculated from Eq. (4.5). This
determines sin Qn and leads to a new value of sin Qn. If this differs

from the estimated value, the process is repeated from that point, using

the new value of sin Gn. Only the one iteration should ever be raquired.

Next Ahn is calculated from Ae\.on, giving h . /_fp is calculated 3
from Eq. (4.20) and used to calculate AJn from Eq. (4.19)., This gives 3
A"U‘D from Eq. (4,22), and A'U"F is then calcuiated, and A‘U"n is ;

n b - i

determined from Eq. (4.23). This gives AVn and Vn' Xange incremenrt

[VSLICE NS W 29994

AXn can now be calculated from Eq. (3.14) and this gives range Xp, Lom=

VSN

pleting the stage calculation.

As an example, the method was applied to a Martlet &4, a gui-

an

launched three-stage rocket, from launch to burn out of the se.ond stage

R IR

(the remainder of the trajectory is high enough to require consideratiun of

Aa.sntl
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the g-variation). It was launched at 6.000 kfps at an elevation angle of
33.00. The first stage motor was ignited at 40.0 kft, and the second stage
motor immediately after burn-out of the first stage, Three altirude increments
were used in calculating the glide trajectory before ignition. In Table 2

the results of the calculations are compared with the output of the standard
HARP Computer Program for the same example obtained from Ref, 4., Vehicle
parameters and trajectory calculaticns, and the output of the Computer Prcgran,

are given in Appendix E.

TABLE 2

Martlet 4 Traijectory Calculations for HARP Case 1046

\Y X h t )
n n n n n
kfps kft kft sec o
Launch 6.000 0 0 0 33.0
Stage 1 Ignition HARP 4.822 67.2 40.0 14,61  28.92
Present 4,808 66,4 40.0 14,67 28.8
Error ~.29% ~1.34% - +.41% -.427%
Stage 2 Ignition HARP 12.155 174.8 93.9 29.61 26.02
Present 12,21 172.,8 97.1 29.67 27.7
Error +.45% =1.14% +3.41% +.20% -+6.46%
Stage 2 Burn-out HARF 18.621 311,8 158.7 39.61 25.35
Present 18.84 306.8 166.9 39.67 27.3
Error +1,18% «1.67% +5.16% +.15% +7.69%
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4.4 DISCUSSION

Table 2 and Appendix E show that rocket-powered trajectories
through the atmosphere can be accurately and easily calculated by slide
rule by the present method. In the example the velocity and range at
burn-cut cf Stage 2 were given very accurately, the altitude and elevation
angle less accurately, hoth being too high, The time was of course given

accurately, since it was known except for the initial glide trajectory.

The high values of hn and Qn, although acceptable, lead to
over-estimates of apogee, or of orbital height after Stage 3 firing, and
this suggests further work in improving the method of determining ETE—EE,
so as to decrease its value towards the correct one while retaining a

simple dependence on the relevant parameters,
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5.0 HIGH ALTITUDE AND ORBITAL TRAJECTORIES

Rocket-powered vehicles will in general reach very high altitudes
or go into earth orbits. The upper parts of their trajectories must then
be calculated by recognizing that gravitational force is a central force
varying inversely as the square of the central distance. No aerodynamic
drag need be considered unless such problems as the gradual decay of orbits
are being studied, and any high altitude use of rocket thrust can be treated
as a constant-g problem using an appropriate value of g, because of the

short duration of the firing.

The problem then becomes that of determining zero-drag glide
trajectories under the action of an inverse~square central force, The
basic equations governing this motion are simple and lead to explicit
solutions for trajectory parameters, so there is no reed to seek even
simpler approximate solutions. In this section the usual svlutions are
merely derived to complete the set of trajectory equations., No examples

are worked, since the solutions are not new.

EFFECT OF EARTH ROTATION

In previous sections of the report, trajectory analysis was
given in terms of vehicle velocity V relative to earth., This was suitable
over short distances for which gravity could be considered a constant
vector, When the true central force pature of gravity is considered, Lhe

trajectory analysis must be based on the vehicle absolute velocity of

magnitude U, or in vectcor form:

7=7+D'; (5.1
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- . .

where UE is the vector velocity of the earth's surface at the gun muzzle,
= T . . . .

Since UE and V are in different directions, it is convenient to express

relations between components. These relations, in the context of this
report, would be applied at the point on the vehicle trajectory where the
constant-p analysis of previous sections is replaced by the analysis of
this section. The relations can be obtained from Fig. 16, First, using

the cosine law:

u2 = v2 + UEZ + zqu cos L (5.2)

But, from the right triangles of the diagram it can be seen that
V cos 8 cos (f'v =V cos X (5.3)
so that, cancelling V and substituting for cosxm Eq. (5.2):
2 2 2

= . 4
U V+UEI-2VUEcosecos ij (5.4)

where sljv is the azimuth angle of the gun. Eq. (5.4) gives U. The

absolute path angle S to the local horizontal is given by
Usin & =V sin 6 {5.5)
The absolute azimuth angle ‘;"u is given by

U cos 6 cos lI”u =V cos 8 cos (’Uv + Ug (5.6)
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5.2 FUNDAMENTAL EQUATIONS AND SOLUTIORNS

Because only the central force of gravity acts on the vehicle
its trajectory remairs in a plane passing through the earth's centre, and
Fig., 17 defines the variables of the trajectory. The equations of motion

of the vehicle for the r- and - directions are written, for unit mass:

2 2 r, 2
. . dr a 7 _ E
r-direction o2 - (——-—dt =~ gg ( - ) (5.7)
t
2
g-direction r i--@~+ 2 dr 4o _ 0 (5.8)
—_—— dt2 dt dt

The second terms on the left side of the two equations are the ceantri-
petal and coriolis accelerations, respectively, and =) is the value of g

at the earth's surface, used in the previous sections of the report.

If Eq. (5.8) is multiplied by r, it can be written:

d 2 d¢ _
e g =0
or
2 d¢
o = C, constant = rU cos § (5.9)
H
where C = L Un-l cos 6n-—1 (5.10)

Gl can be eliminated from Eq. (5.7) using Eq. (5.9):

dt
2 2 r, 2
dr C E
- T == g (T (5.11)
dtz r3 E ‘r
Now, $& = U sin & = U_. Therefore
> dt T’ !
2
2 dt rdr 3 2 <L

(5]
2}
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Eq., (5.12) can be integrated directly to give

2 2 1 1 2 1 1 2
U™ =0, = ( -3 407 (= +=) =-2g.r
T Tt L T r.a T & g (5.13)

Since the altitude change of the vehicle is of primary interest, it is

convenient to introduce

r
An. Ah _, _ nal (5.14)
r r

In terms of AN, Eq. (5.13) appears in the form

2¢ v 2
2 2 &E 2
Ur - Ur . =- AR - - U¢ 2 - Ah})} (5.15)
n~L n~1 n~1
where
U¢ = U cos 6

At apogee, U = 0, so that Eq. (5.15) can be solved for A)’bap:

g © 2 r g T 2 Z \
A"Ua = 1 -!*—-E—z—) + é -(..___E_i) + t:an2 6n_1 (5.16)
b \r .U r .U
n-1 ¢n-1 n-1 ¢n-1

Eqs. (5.15) and (5.9) determine vehicle velocity as a function of altitude,

It is necessary to relate altitude to elapsed time. This can be done using

2 r d
it = %E. r’ddh _ _n-l AR (5.17)

T rn-lUr (1 -AR) 2Ur

Eq. (5.17) can be integrated directly, using Eq. (5.15), to give
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2 R
r T
_ Taal 1 2 5'E 2
At = i, S tanS__, - RYD) A/tan 6., 2 —-—-——-r 3 - l‘l'Ah-Aha
-1 n-19 J
- n~1
2g.r 2g.r
’ (-as + ?g—E-EE—— 2 (1 -Ah/)—] .25 + ;_A_“J_E_._.___D
. 8sTp ool n-1 76, ~ ! ‘n=l ¢n-l
u.3 g3/ - (L-Ah) G J -Q
¢n—l = _J
- 2 (5.18)
2g.r
where S ,sE E z -sec” & -1
n-1 ¢n—l
R 2 H
2g.1 2
Q=pfs tan” & +[;§E—%~———z - 1 (5.19)

In order to find the range of the vehicle, it is necessary to know the

change in 9. This can be found using £q. (5.9):

Therefore
d¢ = (z'dr = -g dAUnJ (5. 20)
Uy Fn-1"r
Eq, (5.20) can be integrated direct].yé using Eq. (5.15), to give
. o>
:ZA’IA'Z;FjEE;—TT - _ 2
-1 e ! -1y 2/ E'E
A¢ = sin - sin { ([ —=m—y -1
Q Q rn_1U¢ ‘
n-~1

(5.21)

Referring to Fig, "8 the vehicle range increment AX is the great circle
distance between the point 1 intercepted at time t ac the earth's surface
by radius r and the position 2 at time t of the point 3 on the earth's

surface intercepted at time t by radius r_ .:
n-1 n-1
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AXx = T A8 (5.22)

A @' can be obtained by solving the spherical triangle 123, 1In thie,
AP is known from Eq. (5.21), (/"U is given by Eq. (5.6) and great circle
arc 23 and angle 231 can be found, since the latitude of 3 ani the small

circle (eastward) distance 32 travelled by point 3 in the time A,

given by Eq. (5.18), are known,
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APPENDIX A

Trajectory Equations for Zero Drag, Zero Thrust, Constant g.

Newton's 289 Law for X-Direction (see Figure 1)

& (mdxy . £X _
it Mg =" gz o
Therefore
daX = = =V
it constant vn-l oS Qn-l cos O
and LX =X - X 9=V, ycos 0y (c -t ;)

Newton's 279 Law for h-Direction

d 2
-ng = -—-d-g (m .g_%) m -:-E:% = constant

Therefore
dh _ =
ro Va1 sin 0y 9 ~g (t -t 1) =V sin @
and
Ahn = hn - hn'l = Vn_l Si.n On-l(tn-tn-l)
2
- % (tn - tn«l)
Introduce 2gAX 2gAh
A = —3- sh - 0
n ’ n 2
v Vn-l

and substitute for (t:n - tn-l) from Ey. (A-2) in Eq. (&-4):

AR,n = tan O ; AX, - % sec? On_lAan

(A-1)

(A-2)

(A-3)

(A-&)

(A-5)

(3.4)

uvu dividing Eq. (A-3) by Eq. (A-1) an expression for tan @ is obtained:

g(t - t,_1)
tan 6 = tan Qn-l - w-l

(A-6)
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If 0@ is set equal to On and (t, - tn—l) is elimated using Eq. (A-2)
the result can be written:

tan 8 = tan 0, ; - % sec? 01 AX o

or
2(tan on-l ~ tan On)

set':2 )

ax, -

n~-1

Again, if Eq.(3.4) is solved for A)(n, the result is:

2(tan 8 _y - Vtanzcn_l - secZGn_l A'e_\,n‘)

oY = : 3
sec” 9, 1

On comparing Eqs, (A-7) and {(A-8) it is seen that

2 2
tan 9, = «/tan Gn-l - gec g'n-l Ag.n

With a little rearrangement, using trigonometric identities, this can

be put in the form:

} y) -
sin® @ - Aﬂ/n cos 8
sin @_ = n-1 = N L
n 1-4%, 1- Ak,
or _ cos 8,3

cos ©
n

Tk,

I1f Eq, (A-4) is multiplied through by T“g;z'g' the result is
-18

28 &4 \ ) ( gt \ (gdtn
2 \* -
Vn~lsin On—ll Vn_lsinOn_l } Vn_lsinGn_l

2

(A-7)

(A-8)

(4-9)

(3.5)

(3.6)

(A-10)
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or, if Eq,(A-2) is used to subLstitute for [Stn:

( 2z &y ) ) g AX, g AXy N\ 2 1Dy
Vz lsinzgn Vi_lsin 8,.1¢08 6,1 Vﬁ_lsin On_lcosgn_l

n- -1

Both Eq.(A-1C) and (A-11) have the form

Leo2 €.¢°2 (3.16)

giving a universal zero-drag, constant-g trajectory equation,
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‘ D~1
3
f APPENDIX D
:
d - Trajectory Equations for Vehicle under Rocket Thrust with Zero Drag, Constant g
§ Newton's 2nd Law for Directions Parallel and Normal to Trajectory:
: . 1, . - qv -
Parallel: F - mg sin 8§ = m-gg p-1
Normal: « mg cos 8 = mV %% D2
Elimate V from D~1 and D~2 by dividing D~2 by'%% and differentiating with
’ respect to t:
g 2O/dr_
. a4 ( cos 9 - ————-——} -
maE T at 3a7ac mg {szn 6 + cos @ (d07dt)2)= F- mg sin O
Therefore, on simplifying the a.ove, the differential equation for 8(t)
: is obtained:
) . dzg de 2
i 82+ (2tan 0 - olsec 8) 48) =0 (4.1)
X dt2 ¥ dt
o
Solution for oL = constant
Set (U = %% Then Eq., (4.1) can we written
£ 4 (2 tan 0 - K sec 6) d0 =.0 D-3
F This can ve integrated dliectly to give
- 0 cos® el (1 + sin @FF
J = o2 o< D-4
n-1 cos 0 (1 + sin §,_.1)

his is integrated in tuxn to give, after some simplification:
0

S D e0s® 72 g do cos¥ to_ AT,
: = - — (4.2)
u 6, 1 (1 + sin 0% (1 + sin @ _;)%

3

pcEi2in




(B S iv )

D-2

Solution for Aan for o = constant

Divide D-1 by m and differentiate with respect to t:

dv =< g cos 9 49 _ g2 cos2e D-5
a2 dt \

using D-2, Again, if D-1 is solved for g sin 0:

. av
g sin § = gok - Ty D-6
or
gz(l - cos2Q) = g2°<2 2geC dV+( D-7

9 .
Equating g coszg from D-5 and D~7, @ is eliminated:

2
d-y
V=3 =- gz(o< -1) + 2go< (
dt
or .
dv 2 2
.g_t(vg%)-2g0(-d-g=-g-(o<-1) D-8

D~8 can be integrated directly to give:

o) s (] e e o

ﬂ can ve eliminated, using D-6:
2

{o( + sin 9} =V l{OC + sin @ 1} g (ol -—1)(t-—tn_1)

or a+sin 8 1 ‘S g(oé 2_1) (-t n-1) dh 1

-+

i——— - - '.—- D"l
V=V.1 ol+ sin 0 ¢+ sin 9) dt  sin@ 0
This gives directly

. sin 9 dt 2 sin @ (t-t,_q)dt
dh =V (K+sin 8, 1) Tx7 sine T 8K -D) T Sig 5 D-11

D-11 is made non-dimensional oy multiplication with -\273-12 and then
N

integrated:

n
sin 8 dT 2 in AT 4V
AY\, = 2(X+ sin Q l)J (e<+ sin 8) + 2(oC-1) _( Sl?o(+ sin Q)

(4.6)
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